Step of Proof: bool_ind
9,38
postcript
pdf
Inference at
*
I
of proof for Lemma
bool
ind
:
P
:(
).
P
(ff)
P
(tt)
{
b
:
.
P
(
b
)}
latex
by ((((Unfold `guard` 0)
CollapseTHEN (UnivCD))
)
CollapseTHENA ((Auto_aux (first_nat 1:n
C
) ((first_nat 1:n),(first_nat 3:n)) (first_tok :t) inil_term)))
latex
C
1
:
C1:
1.
P
:
C1:
2.
P
(ff)
C1:
3.
P
(tt)
C1:
4.
b
:
C1:
P
(
b
)
C
.
Definitions
t
T
,
{
T
}
,
x
(
s
)
,
P
Q
,
,
x
:
A
.
B
(
x
)
Lemmas
bfalse
wf
,
btrue
wf
,
bool
wf
origin